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Abstract

It is relatively easy to enhance CLIPS to support multiple expert systems running in a distributed
environment with heterogeneous machines. The task is minimized by using the PVM (Parallel
Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library
of C and FORTRAN subprograms that supports distributive computing on many different UNIX

platforms. A PVM demon is easily installed on each CPU that enters the virtual machine
environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to
obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM
makes the combination of software particularly attractive for budget conscious experimentation
of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a
design that is sufficient to provide essential message passing functions in CLIPS and enable the

full range of PVM facilities.

Introduction

Distributed computing systems can provide advantages over single CPU systems in several
distinct ways. They may be implemented to provide one or any combination of the following:
parallelism, fault tolerance, heterogeneity, and cost effectiveness. Our interest in distributive
systems is certainly for the cost effectiveness of the parallelism they provide. The speedup and
economy possible with multiple inexpensive CPUs executing simultaneously make possible the
applications in which we are interested, without a supercomputer host. The economy of
distributed computing may be necessary for the realization of our applications, but we are even
more interested in distributed systems to provide a simplicity of process scheduling and rapid
interaction of low granularity domain specific actions. Our approach to implementing certain

large and complex computer systems is focused on the notion of quickly providing reasoned

response to user actions.

We accomplish the response by simultaneously examining the implications of an user action
from many points of view. Most often these points of view are generated by individual CLIPS[l]
expert systems. However, there is not necessarily a consistency in these viewpoints. Also, a
domain inference may change over time, even a small period of time, as more information
becomes available. Our systems have the experts immediately receive and respond to low level
user action representations. The action representations encode the lowest level activities that are

meaningful to the user, such as the drawing of a line in a CAD environment. Thus, if there are a
dozen, or more, expert domains involved in an application, it is necessary to transmit user actions
to each expert and combine the responses into a collective result that can be presented to the user.
Of course, the intention is to emulate, in a relatively gross manner, the asynchronous parallel

cooperative manner in which a biological brain works.

Over the course of eight years, the CAL POLY CAD Research Center and CDM Technologies,
Incorporated have developed several large applications and many small experiments based
essentially on the same ideas.[2, 3, 4] In the beginning we wrote our own socket code to
communicate between the processes. Unfortunately, with each new brand of CPU introduced into
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a system it was necessary to modify the communication code. There simply are not sufficient
standards in this area to provide portability of code, except by writing functions that are machine
specific. Moreover, our main interest is not the support of what is essentially maintenance of the
inter-process communication code. But for many yeats it seemed necessary to support our own
communication code because the other distributed systems we investigated were simply too
inefficient for our applications, even though they were generally much more robust. We then
found that PVM[5] code was very compatible with our requirements.

PVM

PVM is a free package of programs and functions that support configuration, initiation,
monitoring, communication, and termination of distributed UNIX processes among
heterogeneous CPUs. Version 3.3 makes UDP sockets available for communication between
processes on the same CPU, which is about twice as fast as the TCP sockets generally necessary
for communication between CPUs. Also, shared memory communication is possible on SPARC,
SGI, DEC, and IBM workstations, and several multiprocessor machines.

Any user can install the basic PVM daemon on a CPU and make it available to all other users. It
does not require any root privileges. Users can execute their own console program, pyre3, that

provides basic commands to dynamically configure the set CPUs that will make up the 'virtual
machine'. The basic daemon, pvmd, will establish unique dynamic socket communications for
each user's virtual machine. Portability is obtained through the use of multiple functions that are
written specifically for each CPU that is currently supported. An environment variable is used to

identify the CPU type of each daemon and hardware specific directory names, such as SUN4, are
used to provide automatic recognition of the proper version of a PVM function. Since all of the
common UNIX platforms are currently supported, the code is very portable.

The fundamental requirements for a PVM distributed system involving CLIPS processes consist
of starting a CLIPS executable on each selected CPU and calling PVM communication facilities
from CLIPS rulesets. The first of these tasks is very easy. PVM supports a 'spawn' command
from the console program as well as a 'pyre_spawn' function that can be called from a user
application program. Both allow the user to let PVM select the CPU on which each program will
be executed or permit the user the specify a particular CPU or CPU architecture to host a

program. Over sixty basic functions are supported for application programming in C, C ++, or
FORTRAN, but only the most basic will be mentioned here and only in their C interface forms.

PVM Communication Basics

Each PVM task is identified by its 'task id'(tid), an integer assigned by the local PVM daemon.
The tid is uniquely generated within the virtual machine when either the process is spawned, or
the pvm_mytid function is first called. Communication of messages between two processes in a
PVM system generally consists of four actions:

1. clear the message buffer and establish a new one
2. pack typed information into the message buffer

3. send the message to a PVM task or group of tasks

4. receive the message, either blocking or not

- pvm_initsend
- pvm._]pkint,

pvm..pkfloat, etc.
- pyre_send,

pyre_recast, etc.

- pyre recv,
pvm_nrecv, etc.

Each message is required to be assigned an integer, 'msgtype', which is intended to identify its
format. For instance, taskl may send a message that consists of ten integers to task2. In the
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'pvm_send' used to transmit the message, the last argument is used to identify the type of
message. The programmer may decide that such a message is to be of type 4, for example. Then,
task2 can execute 'pvm_recv', specifying which task and message type it would like to receive.
A -1 value can be used as a wildcard for either parameter in order to accept messages from any

task and/or of any type. If task2 indicates that it wishes to accept only a message of type 4 to
satisfy this call, it then knows when the 'pvm_recv' blocking function succeeds that it has a

message of ten integers in a new input buffer.

As a more complete example, the following code shows a host task that will spawn a client task;
then it will send the client a message consisting of an integer and a floating point value; and then
it will wait for a reply from the client. The client waits for the message from the host, generates a

string message in reply, and halts. When the client message is received, the host prints the
message and halts.

Host Client

#include "pvm3.h" #include "pvm3.h"

mamO { mainO[

inthostid,fids[l];/*pvmencodespidwithinataskid(rid)*/
intivaluel; /*firstvaluetobesent */
float fvalue2; /* second value to be sent */
char message[25];/* string to be returnedfrom client */

hoslid = pvm_mytid; /*enrollin pvm */

pvm_spawn("Client",
(char**)0,
O,
tetl

I,
rids):

/* name of process to start up */
/* args to be passed to process */
/* options - 0 to use any CPU */
/* host name when not option 0"1
/* number of copies to spawn */
/* rids of processes started "1

int hosfid, clientid;
clientid = pvm_mytid;

pvm recv(-1,2); /* wait for type 2 */
/* we ignore the contents in this example "1

pvm_initsend(PvmDataRaw);
pvm_pkstr("Hi Host!"); P' pack swing */
hostid = pvm_.parent0; /* get host rid */
pyre send(hostid, 1); /* send siring "1

- /*astypel *I

vm_exitO;

pvm_initsond(PvmDataRaw); /* get buffer */
/* no encoding of dam if same type CPU */

[pvm_pkint(23, I, 1); /* pack 1 int into the cuxrent buffer */
Ipvm_pkfloat(45.678, 1, 1); /* pack 1 float into the current buffer */

Ipyre_send(rid[0], 2); /* send buffer as user chosen type 2 */
Ipvm recv(-1, 1); /* wait for message from anyone (-1 is a "1
I - /* wildcard) that is user typed as 1 "1

IPvm_upks_message); /* unpackstring from bufferinto message*/
I

PrinffCI got the message: %s_ , message);

I _vm_exit0;

Figure 1. A PVM Example

CLIPS Implementation Considerations

The basic need is to assert a fact or template from a rule in one CLIPS process into the factlist of

another CLIPS process, which may be executing on a different processor. We might want a
function that could use a PVM buffer to transmit a CLIPS 'person' template as in figure 2:

( BMPutTmplt ?BufRef ( person (name "Len") ( hair "brown") (type "grumpy")) )

Figure 2. Sample Send Template Call
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The fit'st problem this presents is that the form of this function call is illegal. It is possible to use
a syntax in which the fact that is to be communicated is presented as a sequence of arguments,
rather than a parenthesized list. But this syntax does not preserve the appearance of the local
assert, which is pleasing to do. The solution is to add some CLIPS source code to provide a
parser for this syntax.

Second, consideration must be given as to when the PVM code that receives the messages should
execute. It is desirable that receiving functions can be called directly from the RHS of a CLIPS
rule. It is also desirable in most of our applications that message templates are transparently
asserted and deleted from the receiver's factlist without any CLIPS rules having to f'u'e. In order
to accommodate the latter, our CLIPS shell checks for messages after the execution of every
CLIPS rule, and blocks for messages in the case that the CLIPS agenda becomes empty.

Third, it is useful to be able to queue message facts to be asserted and have them locally inserted
into the receiver's factlist during the same CLIPS execution cycle. There are occasions when a
number of rules might fLre on a subset of the message facts that are sent. In most cases the best
decision as to what rule should fh'e can be made ff all associated message facts are received

during one cycle, and all such rules are activated at the same time. Salience can usually be used
to select the best of such rules and the execution of the best rule can then deactivate the other

alternatives. In order to implement this third consideration, the message facts are not sent for
external assertion until a special command is given.

OVERVIEW OF CMS

The CLIPS/PVM interface or CLIPS Message System (CMS), provides efficient, cost effective
communication of simple and templated facts among a dynamic set of potentially distributed and

heterogeneous clients. These clients may be C, C ++, or CLIPS processes. Clients may
communicate either single fact objects or collections of facts as a single message. This
communication takes place without requiring either the sender or receiver to be aware of the

physical location or implementation language of the other. CMS will transmit explicit generic
simple fact forms by dynamically building C representations of any combination of basic CLIPS
atoms, such as INTEGERs, FLOATs, STRINGs, and MULTIFIELDs. CMS will also

communicate facts or templates referenced by a fact address variable.

In addition to the dynamic generic process described above, the communication of templated
facts is supported in a more static and execution time efficient manner. Specific roudnes capable
of manipulating client templates in a direct fashion are written for each template that is unique in
the number and type of its fields The deftemplate identifies what message form these routines
will expect. This is a distinct luxury that eliminates the time involved in dynamically determining
the number and types of fields for a generic fact that is to be communicated. The disadvantage is
that the routines must be predefined to match the templates to be communicated. However, the
applications in which the authors are involved have predetermined vocabularies for the data

objects that are to be communicated. In much the same way that deftemplates provide efficiency
through the use of predetermined objects, these template-form specific communication routines
provide object communication in the most efficient, cost-effective fashion. The following section
describes the overall architecture of a system which supports the previously described
functionality.

Architecture

The underlying support environment consists of a set of utility managers called the System
Manager, Memory Manager, and Error Manager. All three managers provide various
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functionality utilized by the communication system to perform efficient memory usage and error
notification. The core of the communication system consists of five inter-related components as

shown in Figure 3. These components are the Session Manager (SM), Buffer Manager (BM),
Communication Object Class Library, Communication Object META Class, and CLIPS
Interface Module. Collectively, these components provide the communication of objects among a

dynamic set of heterogeneous clients.

'C' Clients

_ °

\ j

[
_____.3 (Parallel Virtual Machine) T_

Figure 3. Communication System Architecture

Session Manager

The Session Manager (SM) allows clients to enter and exit application sessions. Within a specific
session, clients can enter and exit any number of client groups. This functionality is particularly

useful in sending messages to all members of a group. The SM can also invoke PVM to spawn
additional application components utilizing a variety of configuration schemes. The facilities
supported range from the specification of CPUs to host the spawned applications to an automatic
selection of CPUs to use as hosts and balance the load across the virtual machine.

Buffer Manager

The buffer manager provides for the creation and manipulation of any number of fact buffers.

Dynamic in nature, these buffers can be used to communicate several fact objects as a single
atomic unit. That is, receiving CLIPS clients will accept and process the buffer's contents within
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a single execution cycle. Clients are free to 'put' or 'get' facts into and out of buffers throughout
the life of the buffer. Information as to the contents of a buffer can be obtained by querying the
buffer directly.

Communication Object Class Library

The Communication Object Class Library contains methods which are specific to a particular
data object. (These are the routines referred to in the Overview of CMS section above.) These
methods include a set of constructors and destructors along with methods to 'pack' and 'unpack'
an object component-by-component. This library includes additional methods to translate an

object to and from the CLIPS environment and the C Object representation used with PVM. It is
this class library which may require additions if new template forms are to be communicated.

Communication Object META Class

The motivation of the Communication Object META Class is twofold. The META Class
combines common object class functionality into a single collection of META Class methods.
That is, the highest level communication functions are exist as META Class methods, which

freely accept any object defined in the Object Class Library without concern for its type. The
same high-level META methods are invoked regardless of the type of objects in a
communication buffer. They determine the actual type of object to be processed and then call the
appropriate class method. This effectively allows clients to deal with a single set of methods
independent of object type.

CLIPS Interface

Essentially acting as a client to the PVM system, this collection of modules extends the
functional interface of the communication system described above to CLIPS processes. This

interface provides CLIPS clients with the same functionality as their C and C ++ counterparts. In
an effort to preserve the syntactical style of the CLIPS assert command, several parsers were
incorporated. Since the standard CLIPS external user functions interface does not support such
functionality, some additional source code to the CLIPS distribution code was required. The
following section provides a brief description of the functional interface presented to CLIPS
clients.

CMS FUNCTIONS

ID_ObjRef SMConnect0 int SMDisconnect0
Connects the caller to a multi-agent session. Disconnects the caller from a multi-

agent session.
ARGUMENTS :STRING Name ARGUMENTS : void

LONG IniddServerValue
LONG ldServerRange RETURNS :EM_SUCCESS o¢EM_ERROR

RETURNS : A reference to the object representation of the caller
or EM_ERROR_REF. Note, this object can be passed to other
clients as a way to address the caller directly.

int SMEnterGrp0
Enrolls the caller into the group <Group>.

ARGUMENTS : STRING Group
RETURNS : The caller's instance number within

<Group> or EM_ERROR. Instance numbers start at
0 and increment upward.

int SMExitGrp0
Unenroils the caller from the group,

ARGIVe'S : void

RETURNS : EM_SUCCESS or EM ERROR
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int SMSpawn()
Spawns <NumCopies> copies of <Task> in accordance
with the values of <How> and <where>.

;ARGUMENTS : SYMBOL Task
INTEGER NumCopies
INTEGER How

<SM_DEFAULT - Target host is determined by the Session
Manager. In this case <Where> should be NULL.

SM_HOST - Target host is determined by <Where>.
SM_ARCH - Target host is determined by the Session

Manager. The target host's architeclm'e will be of

int SPrintIdentity0
Prints the object referenced by
NIdentityRef> to stdout.

ARGUMENTS : ID_Obj_ef IdentityRef
RETURNS : EM_SUCCESS or EM_E_OR

BM_BufRef BMCreate0
Creates a "send" buffer which encodes its
contents according to <Encoding>.

ARGUMENTS :INTEGER Encoding
<BM_DEFAULT - Data for heterogeneoustype <Where>.

SM_DEBUG - Target host is determined by the Session
Manager. In this case <Where> should be NULL. All copies
of <Task> will be run in the PVM debugger.

SM_TRACE - Target host is determined by the Session Manager.
In this case <Where> should be NULL. All copies of
<Task> will generate PVM trace data. >

SYMBOL Where

<Examples: "moby.cadrc.calpoly.edu", or SUN4>

MORE ARGS ArgV

RE<AnY#TURNSof args passed to each task upon startup.>: Actual number of spawned tasks or EM_ERROR.

int BMPutTmplt0
Places <Tmplt> into <BUlRef>.

ARGUMENTS : BM BufRef BufRef
DE1TTEMPLATE Tmplt

RETURNS : EM_SUCCESS or EM_ERROR

int BMGrpSend()
Sends the contents of <BufRef> to each member of <Group>.

ARGUMENTS : STRING Group

BM_BufRef BufRef

RETURNS : EM_SUCCESS or EM_ERROR

int BMQueryReceive()
Formally processes incoming object groups. If no pending
object groups exist, control is IMMEDIATELY returned
to the caller.

ARGUMENTS : void
RETURNS : EM_SUCCESS or EM_ERROR

int SGrpSendIdentity0
Sends an identity to each member of a group.

ARGUMENTS : STRING Group
ID_ObjRef ObjRef

RETURNS : EM_SUCCESS or EM_ERROR

int SGrpSendTmplt0
Sends a template to each member of a group.

ARGUMENTS : STRING Group
Expression Tmplt

RETURNS : EM SUCCESS orEM ERROR

networks

BM_RAW - No encoding takes place
BM IN PLACE - Same as

BM_DEFAULT except data is not
copied into the buffer until it is senL >

RETURNS : A reference to buffer or
EM_ERROR_REF

int BMDestroy0
Destroys the buffer referenced by <BufRef>.

ARGUMENTS : BM BufRef BufRef
RETURNS : EM_SUCCESS or EM_ERROR

int BMSend0
Sends contents of <BufRef> to <IdentityRef>.
The contents of <BufRef> is left unaltered.

ARGUMENTS :ID_ObjRef IdentityRef
BM BufRef BufRef

RETURNS : EM_SU-CCESS or EM_ERROR

int BMReceive()

Formally pro_, .sses incoming objc.c...t.groups. If
no penomg onject groups extst, caller _s put to
sleep until such an event occurs. Received
objects will be placed into the caller's fact-list ir
their appropriate form.

ARGUMENTS : void
RETURNS : EM_SUCCESS or EM ERROR

int SSendIdentity0
Sends an identity to another clienL

ARGUMENTS :ID_ObjRef DstIdentityRef
ID_ObjRef ObjRef

RETURNS : EM_SUCCESS or EM_ERROR

int SSendTmplt0
Sends a template to another client.

ARGUMENTS :ID_ObjRef DstIdentityRef

Expression Tmplt
RETURNS : EM.SUCCESS or EM_ERROR
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Figure 4. CMS Functions

A CMS EXAMPLE

The following example illustrates a CLIPS knowledge base intended to communicate
VALUE FRAME templates with CMS. The example consists of four CLIPS constructs: one
deftemplate and three defrules. The first step of the example is to define a VALUE FRAME
template having four slots. The client registers itself in the session via the CONNECT-ME rule.
This role also enters the client into a group. The rule then broadcasts the client's identity to all
other members of its group. Incoming identifications are processed by the
RECEIVE IDENTITY rule. After receiving another client's identification, several
VALUE_FRaME facts are placed into a buffer and sent back to the client.

Incoming VALUE FRAME facts are processed by the PROCESS VALUE FRAME rule.
Finally, when there_tre no more rules on the agenda, the client goes into a block_g receive state
via the execution of the RECEIVE rule. CLIPS clients receive facts in two distinct manners. In

the first case, the communication system is queried at the end of each execution cycle for
pending messages. The second method by which a client can receive messages is through an
explicit call to BMReceive. The functionality of this call is identical to the implicit method, with
the exception that the caller will be put to sleep until a pending message exists. In either case,
incoming facts are processed transparendy to the client and produce immediate modifications of
the fact-list.

(deftemplateVALUE_FRAME
(slot Frame )
(slot Instance)
(dot Slot )
(slot Value )

(defrule CONNECT_ME
( initial-fact )

=>

(bind?MyName "Access")
(bind?MyGrp "AgentGrp")

)

(defmteRECEIVE IDENTITY
(BM_DEFAULT'_Mode )
( SESSION-MEMBER ?Name

CAN-BE-REFERENCED-BY ?Identity
)

=>

;Sendournew friendsome templates
(bind?BufRef(BMCreate ?Mode ))

; Connect to the session
( bind ?Myld ( SMConnect ?MyName 200 200) )

; Join a group
( SMEnterGrp ?MyGrp )

; Send my identity to members of my group
( SGrpSendldenfity ?MyGrp ?MyId)

; Assert the "receive" control fact

( BMPutTmplt ?BufRef ( VALUE_FRAME
( Frame Framel )
( Instance Inslancel )
( Slot Siotl )
( Value 1234 )

)
)
( BMPutTmplt ?ButRef ( VALUE_FRAME

( Frame Frame2 )
(Instance Instance2)
( Slot Slot2 )
( Value 56.789 )

)
)
( BMPutTmplt ?BufRef ( VALUE_FRAME

( Frame Frame3 )
( Instance Instance3 )
( Slot Slot3 )

( assert( RECEIVE ) )
)

(defrule PROCESS VALUE FRAMES
?TMPLT <- ( VA_UE_FRANTE

( Frame ?Frame )
( Instance?Instance )
( Slot ?Slot )
( Value ?Value )

)
=>

; Process the template

. ..

( relract ?TMPLT )
)
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( Value "How are you ?" )
)

)
; Send the buffer to our new friend?
( BMSend ?Identity ?BufRef)

(defrule RECEIVE
(declare (salience -10000 ) )
?REC <- ( RECEIVE )

=>

; Deslroy the buffer
( BMDestroy ?BufRef)

)
) Figure 5. A CMS Sample

(BMReceive )
(rcU'act?REC )
(assert(RECEIVE ))

CONCLUSION

PVM and CLIPS both provide free source code systems that are well maintained by developers
and a sizable number of users. Relative few source code changes are necessary to either system

in order to build a reliable and robust platform that will support distributed computing in a
heterogeneous environment of CPUs operating under UNIX. The CMS system described in this
paper provides the CLIPS interface code and some parsing code sufficient to enable efficient use

of PVM facilities and communication of CLIPS facts and templates among C, C ++, and CLIPS

processes within a PVM virtual machine. Even more efficient communication can be obtained
through enhancements to the PVM source code that can provide more efficient allocation of
memory and reuse of PVM message buffers in certain applications.

NOTES

Information on PVM is best obtained by anonymous ftp from: netlib2.cs.utk.edu
Shar and tar packages are available from the same source.

The authors are currently using the CMS system in applications that involve multiple CLIPS
expert systems in sophisticated interactive user interface settings. It is expected that the basic
CMS code will become available in the Spring, 1995. Inquiries via e-mail are preferred.
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